University of Albany High impact weather is a growing area of societal concern – particularly given the increased frequency and intensity of extreme weather in the face of a rapidly changing climate. The social and socioeconomic impacts of high impact weather systems is directly related to the public response to the weather forecast and related hazardous weather information. In the aftermath of a high impact, extreme weather event, the public's protective actions are indeed critical to safeguarding life and property. Ensuring that the general public adheres to weather forecast information is a multi-disciplinary challenge that demands a team science and integrated research approach. Social scientists, meteorologists, emergency managers, and communication and media practitioners need to work closely together in order to effectively communicate science, weather forecasts and hazardous weather information, as well as to enhance the messaging of forecast uncertainty to the public. Faculty Scholars and Researchers from the University at Albany have expertise that addresses a wide range of the needed areas for work in this area: | TABLE 1: University at Albany Faculty Scholars/Researchers UNIVERSITY AT ALBANY State University of New York | | | | | | | | |---|---------------------------|----------------------------|--|----------------------------|----------------------|--------------------------|---| | Discipline | Name | Title | Expertise | Discipline | Name | Title | Expertise | | Atmospheric
Sciences | Christopher
Thorncroft | Director/Full
Professor | Weather and climate variability in the tropics; Extreme weather in the NE US; New York State Mesonet. | | Jeffrey
Freedman | Research
Associate | Renewable energy and atmospheric boundary layer (ABL) processes. Extreme weather risk tools. | | Atmospheric
Sciences | Nick Bassill | Director of
R&D | Melding private sector interests with public sector research knowledge, with a focus on meteorological needs. | Emergency
Communication | Amber Silver | Assistant
Professor | Public attention, risk perception, and communication play in protective action decision making during extreme events. | | Atmospheric
Sciences | Jerald
Brotzge | Program
Manager | Program Manager for the NYS Mesonet. Expertise in
synoptic-scale and mesocale weather systems and
their impacts. Applications of NYS Mesonet data for
decision-making. | Emergency
Communication | Samantha
Penta | Assistant
Professor | Health and medical care in crises, decision-making
in preparedness and response, and humanitarian
logistics | | Atmospheric
Sciences | Kara Sulia | Research
Associate | Ice microphysics focuses on crystal growth theory as
a means to improve microphysical parameterizations
within numerical models. Leads xCITE Visualization
laboratory working on AI and decision-making | Emergency
Communication | Jeannette
Sutton | Associate
Professor | Disaster and risk with a primary focus on online
informal communication, and public alerts and
warning disseminated via terse messaging
channels. | | Atmospheric
Sciences | Kristen
Corbosiero | Associate
Professor | Interaction between tropical cyclones and the environments in which they are embedded, with an emphasis on storm structure, the intensity and duration of convection, and the properties of clouds that comprise the storm. | Emergency
Communication | DeeDee
Bennett | | Emergency management, socially vulnerable populations during disasters, emergency communications, disaster policy, and mobile wireless communications. | | Atmospheric
Sciences | Ryan Torn | Chair/Full
Professor | Predictability, data assimilation, synoptic and mesoscale meteorology. | , | Havidán
Rodríguez | President of
UAlbany | Sociology in disaster research; social and economic vulnerability during extreme weathers. | | Atmospheric
Sciences | Lance
Bosart | Distinguished
Professor | Planetary-scale, synoptic-scale and mesoscale
meteorology. I work on a variety of multiscale (time
and space) research problems that relate to the
weather and climate of higher- and middle-latitude | Emergency
Management | Eric Stern | Full
Professor | Crisis decision-making, social media and crisis
preparedness, post-crisis evaluation and learning,
interactive education and instructional design, and
case research/teaching methodologies. | | Atmospheric
Sciences | Robert
Fovell | Full Professor | Mesoscale and convective scale meteorology, primarily using high-resolution numerical models. | Emergency
Management | Alex Greer | | Hazard adjustments, relocation decision-making processes, and organizational culture. | | Atmospheric
Sciences | Andrea
Lang | Associate
Professor | Role of stratospheric dynamics on subseasonal variability of weather. Research is applied to decision-making applications. | Emergency | Jason
Kratoville | Director | Change management; development and delivery of training and exercise programs for practitioners in emergency management, e.g., NYS DHSES. | | Atmospheric
Sciences | Paul Roundy | Full Professor | Analysis of observations to study modulation of tropical cyclogenesis and the El Nino/Southern Oscillation (ENSO) by convectively coupled waves and intraseasonal oscillation. Research is applied and integrated in decision-making applications. | Emergency
Management | David
Turetsky | Professor of
Practice | Lawyer, former head of the FCC Emergency
Bureau, and Cybersecurity expert. |