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~ PRACTICAL vs. INTRINSIC PREDICTABILITY

(Melhauser & Zhang 2012 JAS; Lorenz 1996)

Practical predictability: the
ability and uncertainty to
predict given practical initial
condition uncertainties
and/or model errors, both of
which remain significantly
big in the present-day
forecast systems.
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PRACTICAL
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Intrinsic predictability: the limit
to predict given nearly
perfect initial conditions and
nearly perfect forecast
systems, in other words
when the initial condition
and model errors become
infinitesimally small.
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Presentation Notes
 Environmental differences are derived from the current ability of data assimilation systems to provide a reasonable representation of the atmosphere.
 Top diagram displays a schematic of reducing the initial conditions similar to the experiment between EFIG and EFIP.
 Smaller circles represent decreasing the initial spread of the ensemble by decreasing analysis error or observation error (similar to reducing EFIG to EFIA, etc…)
 Highlights importance of knowing the correct flow regime in relation to the truth.
 Better initial conditions will not always lead to better forecasts and event predictability.
MAIN POINT:
 Decreasing ensemble initial condition won’t necessarily increase predictability. Depends on the flow regime and where the truth lies. If it lies in the good regime, decreasing the initial conditions will increase the predictability. If it is close to the middle, it will not help as much since it will still embody both regimes.
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Predictability of a Tornadic
Thunderstorm Event:
Moore, 20 May 2013
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Practical Predlctablllty Control 1- km WRF Run
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Intrinsic Predictability: ensemble w/ subgrid noises
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What is the Ultimate Limit of Day-to-Day Mid-latitude Weather Predictability?

Quiet Revolution of Numerical Weather Prediction
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Forecast skill in terms of 500-hPa anomaly correlations in the range from
3 to 10 days ahead has been increasing by about one day per decade.

Bauer et al. 2015



What are the Ultimate Limits of Multi-scale
Mid-latitude Weather Predictability?

Cases in Study
Europe China
5-11-d fcst T anomaly early Jan 2016 | 24-h rainfall OBS 3 Jul 2016 I
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Week 2 EC forecast failure on transition Day 3-4 Meiyu front north bias
to cold conditions over Northern Europe during historic China flood

« Approach: use operational 9-km global model but 10-member 20-day ensembles, 6 different times

 Initial perturbations from each EDA analysis (1.0 x EDA) vs. 10% of EDA (EDAO0.1 center on the CNTL)



What are the Ultimate Limits of our Daily Weather Predictability?
ECMWEF operational analysis, CNTL forecast, and #1 of the 0.1EDA ensemble valid

at 15-day lead time
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Ongoing collaborations with ECMWF, GFDL and MIT (Zhang et al. JAS, in review)



What are the Ultimate Limits of our Daily Weather Predictability?

Time evolution of midlatitude (40-60N) averaged ensemble error Kinetic energy
spread
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Ongoing collaborations with ECMWF, GFDL and MIT (Zhang et al. JAS, in review)



What are the Ultimate Limits of our Daily Weather Predictability?

Likely 3-to-5 more days can be gained through better ICs!
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Ongoing collaborations with ECMWF, GFDL and MIT (Zhang et al. JAS, in review)



Likely 3-to-5 more days can be gained through better ICs!
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The 3-to-5 predictability gap also holds for the summer!
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Ongoing collaborations with ECMWF, GFDL and MIT (Zhang et al. JAS, in review)



A Multistage Error Growth Model for Multiscale Predictability

Adjustment
process

Baroclinic
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(Zhang et al. 2007, JAS)



Kinetic Energy Spectra with and without Moisture

(Sun and Zhang 2016 JAS)
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» Moist convection is the key to mesoscale predictability; dry and “fakedry” have
-3 spectral slope, moist run has -5/3 at L<400km.
» Implication of spectral slopes on intrinisc predictability consistent with the recent
study of Rotunno and Snyder (2008 JAS).
« Convection and gravity waves are key processes that lead to the flattened
meso/small-scale spectral slope close to -5/3.



Predictability: Random vs. large-scale IC error, dry vs. moist BWs
(Sun and Zhang, 2016 JAS)
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Gravity Waves in Baroclinic Jets: Dry vs. Moist
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(Zhang 2004 JAS; Wei and Zhang 2014 JAS; 2015 JAMES; Wei. Zhang Richter 2016 JAS)



Power spectra buildup for convective storms with =0
Kinetic Energy Spectra at different altitude
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(Sun, Rotunno and Zhang 2017 JAS)




KE Spectra budget across scales at different altitudes
(Sun, Rotunno and Zhang 2017 JAS)
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T(k): nonlinear transfer term across scales; B(k) buoyancy term; Flux(k): vertical transport



National Hurricane Center Official TC Forecast Errors

NHC Official Annual Average Track Errors NHC Official Intensity Error Trend
Atlantic Basin Tropical Cyclones

Atlantic Basin Tropical Cyclones
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Track forecasts have improved drastically over past 25 years: a 3-
day forecast today is as accurate as a 1-day forecast was in 1989.

Intensity forecast accuracy has remained generally stagnant over
that same period, except for the last few years, thanks to the
Hurricane Forecast Improvement Program (HFIP) led by NOAA.



Predictability and Error Sources of Tropical Cyclone Intensity Forecasts:
CHIPS 2009-2015 Intensity Forecast with Different Uncertainties

(Emanuel and Zhang 2016 JAS, 2017 JAS)
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PSU WRF-EnKF Hurricane Analysis & Prediction System

with advanced assimilation of airborne Doppler Radar Vr
Evaluated for all 100+ P3 TDR missions during 2008-2012

PSU WRF-EnKF Hurricane Intensity error (knots)
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(F. Zhang and Y. Weng 2015, Bulletin of the American Meteorological Society)



Assimilating All-sky GOES-R Radiances: Harvey 2017

PSU WRF-EnKF assimilates channel 8 radiances every 1 hour

Independent observations vs. EnKF analysis of channel 10
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(Zhang et al. 2016 GRL; 2018 BAMS in review; Minamide&Zhang, 2017, 2018 MWR)



EnKF Performance on deterministic forecast
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- All deterministic forecast accurately capture the Rl of Harvey,
which is largely improved from noDA forecast.

(Zhang et al. 2016 GRL; 2018 BAMS in review; Minamide&Zhang, 2017, 2018 MWR)



Prediction of a 2017 Tornadic Storm with GOES-R assimilation: Observations
(Zhang, Zhang, David Stensrud 2018 MWR)

() eamesadwa] ssauyblig

N
w
o

g. ABI CH-10 0000 h.ABICH-100100 _ li. ABICH-10 0200

106°w 105°w 104°wW 103°wW 102°W  106°w 105°w 104°wW 103°wW 102°W  106°wW 105°wW 104°wW 103°wW 102°wW




Prediction of a Tornadic Storm with GOES-R assimilation: EnKF analysis vs. observations
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Prediction of a Tornadic Storm with GOES-R assimilation: progressive forecasts
(Zhang, Zhang, David Stensrud 2018 MWR)
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®Adaptive Observation Error Inflation (AOEI)

Problem: erroneous analysis increments

[ If Model (clear / cloudy) # Observation (cloudy / clear) ]

125 hPa x K|
32 + 52[K2]

AQEI: inflating observation error variance

In updating SLP,

x 40[K] ~ 15[hPa]

Ug—AOEI — max {037 [yo — h(xb)]z = Uizz(a:b)}

With AOEI. 12.5 [hQPagx K]
AOEI 40%[ K]
suppresses erroneous analysis increments,
relieves the issues of representativeness & sampling,

& contributes to maintaining balance.
(Minamide & Zhang, MWR, 2017)

x 40[K] ~ 0.3[hPa]


Presenter
Presentation Notes
If typical value is assigned, 
Representative error and sampling error can cause large increments that can introduce imbalance in model.
AOEI can suppress those erroneous increments due to representative error and sampling error.
And thus, it can contributes to maintaining balance


Obs err
\sigma _{o-AOEI} ^{2} = max\left\{ \sigma _{o} ^{2} ,  [y_{o} -  h(x_{b}) ] ^{2}-\sigma _{h (x_{b})} ^{2} \right\}


Original:
 x_{a} - x_{b} =  \frac{cov\left[x_{b},h (x_{b}) \right] }{ \sigma _{o} ^{2} + \sigma _{h (x_{b})} ^{2} }  \times [y_{o} -  h(x_{b}) ]
\frac{12.5 \left[hPa \times K \right] }{ 3^{2} + 5^{2} [K^{2}]}  \times 40[K]  \sim {\bf \textcolor{red}{15 [hPa]}}

AOEI:
 x_{a} - x_{b} =  
\frac{cov\left[x_{b},h (x_{b}) \right] }{ max\left\{ \sigma _{o} ^{2} + \sigma _{h (x_{b})} ^{2} , [y_{o} -  h(x_{b}) ] ^{2} \right\} }  \times [y_{o} -  h(x_{b}) ]
\frac{12.5 \left[hPa \times K \right] }{ 40^{2} [K^{2}]}  \times 40[K]  \sim {\bf \textcolor{red}{0.3 [hPa]}}



Adaptive Background Error Inflation (ABED) "

(a) Observation: Y,
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Presentation Notes
Figure 4. The spatial distribution of (a) GOES-16 observation, (b) EnKF prior mean, (c) ensemble prior standard deviation, (d) asymmetric cloud effect parameter 𝐶_𝐴, (e) calculated cloud-situation-dependent multiplicative inflation factor, and (f) the ratio between the absolute difference between the observation and prior estimate and ensemble standard deviation. All figures are for brightness temperature channel 8 verified at 12Z/23 August 2017. The ensemble priors are from BTinf experiment of Harvey-OSE.
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Latest US weather satellite highlights forecasting

challenges

Researchers begin to tackle the technical obstacles to incorporate observations

from space into weather models.

Jeff Tollefson

The Geostationary Operational Environmental Satellite-17 (GOES-17) will
assume a position above the equatorial Pacific Ocean. When its data are
combined with those from the identical GOES-16, which is already
parked over the Atlantic Ocean, they will monitor the Earth from Africa
to New Zealand. Weather forecasters around the world use such
geostationary satellites to monitor storms, and their models incorporate
limited data on atmospheric moisture and wind speed and direction.

“There is this huge treasure trove of information,” says Fuging Zhang, a

meteorologist at Pennsylvania State University in University Park. He
has experimented with incorporating some of that unused data from
satellites into his models, with promising results. “We can show
dramatic improvements in weather prediction, but you do need a
dedicated research effort”

Ina study currently in review at the Bulletin of the American
Meteorological Society, Zhang and his colleagues show that

incorporating high-resolution data from GOES-16 into an experimental
weather model bolstered predictions of the early development and
intensity of Hurricane Harvey, which struck Texas in August.

The lesson for the United States s that satellites and models aren'
enough, Zhang says. “Our nation has put o much money into launching
beautiful satelites, but we haven' really put as much effort nto how to
put the satellte information into the models!



Concluding Remarks

Predictability of our daily weather including hurricanes and severe storms is
very limited at all scales due to chaotic nature of moist convection

Deterministic prediction of global midlatitude daily weather may be ultimately
limited to 2 weeks; there are 3-5 days of predictable lead time to be gained

Cloud-resolving weather prediction brings apparent benefits but also comes
with faster error growth due to more finer-scale instability being resolved

Further improvement on deterministic forecast depends on the distance

between practical and intrinsic predictability limits

There is a lot of room in improving practical predictability through effectively
assimilating all-sky satellite radiances and radar observations
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