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PRACTICAL vs. INTRINSIC PREDICTABILITY
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(Melhauser & Zhang 2012 JAS; Lorenz 1996)

Practical predictability: the 
ability and uncertainty to 
predict given  practical initial 
condition uncertainties 
and/or model errors, both of 
which remain significantly 
big in the present-day 
forecast systems.

Intrinsic predictability: the limit 
to predict given nearly 
perfect initial conditions and 
nearly perfect forecast 
systems, in other words 
when the initial condition 
and model errors become 
infinitesimally small.

Presenter
Presentation Notes
 Environmental differences are derived from the current ability of data assimilation systems to provide a reasonable representation of the atmosphere.
 Top diagram displays a schematic of reducing the initial conditions similar to the experiment between EFIG and EFIP.
 Smaller circles represent decreasing the initial spread of the ensemble by decreasing analysis error or observation error (similar to reducing EFIG to EFIA, etc…)
 Highlights importance of knowing the correct flow regime in relation to the truth.
 Better initial conditions will not always lead to better forecasts and event predictability.
MAIN POINT:
 Decreasing ensemble initial condition won’t necessarily increase predictability. Depends on the flow regime and where the truth lies. If it lies in the good regime, decreasing the initial conditions will increase the predictability. If it is close to the middle, it will not help as much since it will still embody both regimes.



Predictability of a Tornadic 
Thunderstorm Event:
Moore, 20 May 2013

Zhang, Zhang, Meng and 
Stensrud (2015 2016 MWR)



Practical Predictability: Control 1-km WRF Run

Zhang, Zhang, Meng and Stensrud (2015 WR)



Intrinsic Predictability: ensemble w/ subgrid noises

Zhang, Zhang, Meng and Stensrud (2016 WR)



Bauer et al.  2015

Quiet Revolution of Numerical Weather Prediction

Forecast skill in terms of 500-hPa anomaly correlations in the range from 
3 to 10 days ahead has been increasing by about one day per decade.

What is the Ultimate Limit of Day-to-Day Mid-latitude Weather Predictability? 



What are the Ultimate Limits of Multi-scale 
Mid-latitude Weather Predictability? 

Cases in Study
Europe China

24-h rainfall OBS 3 Jul 20165-11-d fcst T anomaly early Jan 2016

Week 2 EC forecast failure on transition 
to cold conditions over Northern Europe

Day 3-4 Meiyu front north bias 
during historic China flood 

• Approach: use operational 9-km global model but 10-member 20-day ensembles, 6 different times

• Initial perturbations from each EDA analysis (1.0 x EDA) vs. 10% of EDA (EDA0.1 center on the CNTL)



ECMWF operational analysis, CNTL forecast, and #1 of the 0.1EDA ensemble valid
at 15-day lead time

Member #1 of
the 0.1EDA ensemble
10% of IC uncertainty
of current EC analysis

What are the Ultimate Limits of our Daily Weather Predictability? 

Ongoing collaborations with ECMWF, GFDL and MIT (Zhang et al. JAS, in review)



EDA
0.1EDA

Time evolution of midlatitude (40-60N) averaged ensemble error kinetic energy
spread

What are the Ultimate Limits of our Daily Weather Predictability? 

Ongoing collaborations with ECMWF, GFDL and MIT (Zhang et al. JAS, in review)



~3-5 day Predictability Gap

Likely 3-to-5 more days can be gained through better ICs!

EDA
0.1EDA

What are the Ultimate Limits of our Daily Weather Predictability? 

Ongoing collaborations with ECMWF, GFDL and MIT (Zhang et al. JAS, in review)



~3－5 day Predictability Gap

Likely 3-to-5 more days can be gained through better ICs!

EDA
0.1EDA

Ongoing collaborations with ECMWF, GFDL and MIT (Zhang et al. JAS, in review)



~3－5 day Predictability Gap

The 3-to-5 predictability gap also holds for the summer!

EDA
0.1EDA

Ongoing collaborations with ECMWF, GFDL and MIT (Zhang et al. JAS, in review)



A Multistage Error Growth Model for Multiscale Predictability

(Zhang et al. 2007, JAS)



Kinetic Energy Spectra with and without Moisture

• Moist convection is the key to mesoscale predictability; dry and “fakedry” have
-3 spectral slope, moist run has -5/3 at L<400km.

• Implication of spectral slopes on intrinisc predictability consistent with the recent 
study of Rotunno and Snyder (2008 JAS).  

• Convection and gravity waves are key processes that lead to the flattened 
meso/small-scale spectral slope close to -5/3. 

(Sun and Zhang 2016 JAS)
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Predictability: Random vs. large-scale IC error, dry vs. moist BWs
(Sun and Zhang, 2016 JAS)



Gravity Waves in Baroclinic Jets: Dry vs. Moist

(Zhang 2004 JAS; Wei and Zhang 2014 JAS; 2015 JAMES; Wei. Zhang Richter 2016 JAS)



lower troposphere upper troposphere lower stratosphere

Power spectra buildup for convective storms with f=0
Kinetic Energy Spectra at different altitude

(Sun, Rotunno and Zhang 2017 JAS)



KE Spectra budget across scales at different altitudes

T(k): nonlinear transfer term across scales; B(k) buoyancy term; Flux(k): vertical transport

(Sun, Rotunno and Zhang 2017 JAS)



Track forecasts have improved drastically over past 25 years:  a 3-
day forecast today is as accurate as a 1-day forecast was in 1989.

Intensity forecast accuracy has remained generally stagnant over 
that same period, except for the last few years, thanks to the 
Hurricane Forecast Improvement Program (HFIP) led by NOAA.

National Hurricane Center Official TC Forecast Errors



Predictability and Error Sources of Tropical Cyclone Intensity Forecasts: 
CHIPS 2009-2015 Intensity Forecast with Different Uncertainties

(Emanuel and Zhang 2016 JAS, 2017 JAS)



PSU WRF-EnKF Hurricane Analysis & Prediction System
with advanced assimilation of airborne Doppler Radar Vr

Evaluated for all 100+ P3 TDR missions during 2008-2012

(F. Zhang and Y. Weng 2015, Bulletin of the American Meteorological Society)

PSU WRF-EnKF Hurricane Intensity error (knots)



Assimilating All-sky GOES-R Radiances: Harvey 2017

Independent observations vs. EnKF analysis of channel 10

PSU WRF-EnKF assimilates channel 8 radiances every 1 hour

(Zhang et al. 2016 GRL; 2018 BAMS in review; Minamide&Zhang, 2017, 2018 MWR)



EnKF Performance on deterministic forecast
Minimum SLP Max 10-m wind speed

- All deterministic forecast accurately capture the RI of Harvey, 
which is largely improved from noDA forecast.

Color-lines: 
APSU deterministic 
forecast

(Zhang et al. 2016 GRL; 2018 BAMS in review; Minamide&Zhang, 2017, 2018 MWR)



Prediction of a 2017 Tornadic Storm with GOES-R assimilation: Observations
(Zhang, Zhang, David Stensrud 2018 MWR)



Prediction of a Tornadic Storm with GOES-R assimilation: EnKF analysis vs. observations
Ongoing work with Yunji Zhang  and David Stensrud



Prediction of a Tornadic Storm with GOES-R assimilation: progressive forecasts
(Zhang, Zhang, David Stensrud 2018 MWR)



Adaptive Observation Error Inflation (AOEI)

In updating SLP,  

With AOEI, 
AOEI

suppresses erroneous analysis increments,
relieves the issues of representativeness & sampling,

& contributes to maintaining balance.

AOEI: inflating observation error variance

Problem: erroneous analysis increments
If Model (clear / cloudy) ≠ Observation (cloudy / clear)

(Minamide & Zhang, MWR, 2017)

Presenter
Presentation Notes
If typical value is assigned, 
Representative error and sampling error can cause large increments that can introduce imbalance in model.
AOEI can suppress those erroneous increments due to representative error and sampling error.
And thus, it can contributes to maintaining balance


Obs err
\sigma _{o-AOEI} ^{2} = max\left\{ \sigma _{o} ^{2} ,  [y_{o} -  h(x_{b}) ] ^{2}-\sigma _{h (x_{b})} ^{2} \right\}


Original:
 x_{a} - x_{b} =  \frac{cov\left[x_{b},h (x_{b}) \right] }{ \sigma _{o} ^{2} + \sigma _{h (x_{b})} ^{2} }  \times [y_{o} -  h(x_{b}) ]
\frac{12.5 \left[hPa \times K \right] }{ 3^{2} + 5^{2} [K^{2}]}  \times 40[K]  \sim {\bf \textcolor{red}{15 [hPa]}}

AOEI:
 x_{a} - x_{b} =  
\frac{cov\left[x_{b},h (x_{b}) \right] }{ max\left\{ \sigma _{o} ^{2} + \sigma _{h (x_{b})} ^{2} , [y_{o} -  h(x_{b}) ] ^{2} \right\} }  \times [y_{o} -  h(x_{b}) ]
\frac{12.5 \left[hPa \times K \right] }{ 40^{2} [K^{2}]}  \times 40[K]  \sim {\bf \textcolor{red}{0.3 [hPa]}}




Page.28 / 14Adaptive Background Error Inflation (ABEI)

(Minamide & Zhang, QJ, 2018 in rev.)

Presenter
Presentation Notes
Figure 4. The spatial distribution of (a) GOES-16 observation, (b) EnKF prior mean, (c) ensemble prior standard deviation, (d) asymmetric cloud effect parameter 𝐶_𝐴, (e) calculated cloud-situation-dependent multiplicative inflation factor, and (f) the ratio between the absolute difference between the observation and prior estimate and ensemble standard deviation. All figures are for brightness temperature channel 8 verified at 12Z/23 August 2017. The ensemble priors are from BTinf experiment of Harvey-OSE.





Concluding Remarks
• Predictability of our daily weather including hurricanes and severe storms is 

very limited at all scales due to chaotic nature of moist convection

• Deterministic prediction of global midlatitude daily weather may be ultimately 
limited to 2 weeks; there are 3-5 days of predictable lead time to be gained

• Cloud-resolving weather prediction brings apparent benefits but also comes 
with faster error growth due to more finer-scale instability being resolved 

• Further improvement on deterministic forecast depends on the distance 
between practical and intrinsic predictability limits

• There is a lot of room in improving practical predictability through effectively 
assimilating all-sky satellite radiances and radar observations
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