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Initial-Condition Errors: Scale Sensitivities

Consider two different questions

® |s upscale error growth important?
® (even If 1t Is not exactly a “spectral cascade”)

® Given initial errors of fixed absolute magnitude, does
their horizontal scale influence predictability?
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Lorenz’s 1969 Answer: Experiments A & B
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Modified spectral turbulence model (Durran and Gingrich 2014)
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“Evidently when the initial error is small enough, its spectrum has little effect upon the
range of predictability.”
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Error and Background KE (m3/s2)
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Small relative errors in the large-scales can
destroy predictability.

(b) Experiment B
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Influence of Scale: Lorenz Model

® Small relative errors in the large scales rapidly
propagate down to the smallest resolved scale.

® Those small-scale errors subsequently propagate back
upscale as it they had simply originated in the small

scales.
® Upscale growth is responsible for the finite limit to intrinsic predictability

® No easy way to diagnose the scale of the “original
errors”.
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How relevant is the Lorenz model?

® |t does not Iinclude

® Baroclinic instability
® Deep convection
® |[nhomogeneity and nonstationarity

® Nonlinear effects are incorporated only crudely.

® [ncorrectly assumed k°/3 slope for the background
KE spectrum at large-scales.

® Deep Convection? i
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Systems

® Four cases: both weakly and strongly forced systems
e 24-hr control simulations
e WRF model, 2.5 km horizontal grid spacing
e GFS analysis for initial conditions
® Six ensemble simulations branch off each control at hour 6

® Different background perturbations among ensemble members in
the near-surface moisture field

® Monochromatic square wave in horizontal, random phase
®* Small-scale ensemble: x & y wavelengths 20 km (A = 14 km)
® Large-scale ensemble: x & y wavelengths 200 km (A = 140 km)

® Perturbation amplitude of 19 of control moisture field

® 1.-km e-folding decay scale away from the surface
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Control Simulations

Simulated composite
reflectivity

12 hours after
initialization from GFS

Hour 6 in the
ensembles

2.5 km horiz.
resolution

Composite reflectivity at 06Z 30 Apr 2017
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Pertubation KE Growth: April 2017 Case
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Fractions Skill Score '
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Influence of Scale — Convective Systems

® Equal amplitude 19 humidity errors at 14 and 140

km produce:
® Similar losses in predictability in strongly forced cases
® More rapid error growth in weakly forced cases

® Short-wavelength errors influence convective
Initiation
® |mportant in weakly forced cases

®* Long-wavelength errors influence convective

organization
® |mportant in strongly forced cases
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Implications 1or data assimilation on the
mesoscale

® Characteristic velocities at wavelengths of 200-400 km

are 5 times larger than those at 2-4 km.
NEXRAD Coverage Below 10,000 Feet AGL

® Equal improvements:
(> 6-hr forecast)
from reducing IC errors at
2-4 km below 509,
200-400 km below 109,
(equal absolute errors in KE’)

VCP12 Coverage
[ 14,000 ft above ground level*
[ 6.000 ft above ground level*

[ 10,000 ft above ground level*
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Predictability and Microphysics
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MM5 vs Rain Gauges

Black: observations

Gray: MMb5 forecast
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MM5 vs Rain Gauges

WY 2005

Black: observations

Gray: MMb5 forecast
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Predictability and “Physics”

Don’t test a family of physics parameterizations in
simulations using single deterministic initial
condition!
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Another measure of predictability

radar forecast
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Implications for data assimilation: |

Parseval’s relation

[S uw?(z) dx = / h a(k)u* (k) dk

— OO

KE in wavenumber band (k;,k,)

ko

Bk, k) = /k (k)i (k) + o(k)o* (k) dk
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Implications for data assimilation: ||

e k»/3 KE spectrum

E(ky, ks) _ AP =37
E(ks, ka) 223 _ \2/3

 Ratio of velocities in 200-400-km band to those in 2-4-
km band is 0.21

* Which is the easier goal?
Reduce errors at 200-400 km below 109
Reduce errors at 2-4 km below 509,
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Error saturation 0
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