

Uncertainties in Quantitative Precipitation Estimation

NOAA/NATIONAL SEVERE STORMS LAB, NORMAN, OK

Norman, Ok Predictability Assimilated Data and In-situ Observations: Implications for the Jncertainty in Radar Retrievals, Model Parameterizations, 0 f Weathe

10/31/2018

Outline

In the National Weather Service (NWS) operational radar QPE:

- 1) significant advances that have been made;
- 2) remaining issues need to be addressed;
- 3) challenges to solving the issues; and
- 4) What's needed to address the challenges.

Advancement of NWS Radar QPE

3

Single Radar

MRMS-Q3DP (Ryzhkov et al.

2014, Zhang et al. 2017): Multi-radar, dual-pol R(A)/R(K_{DP}) in rain and hail Q3RAD in mixed and ice phase Evaporation correction

Multi-Radar Multi-Sensor (MRMS)

Z: reflectivity; Z_{DR}: differential reflectivity; K_{DP}: specific differential phase; A: specific attenuation

Single-radar, Single-pol (PPS)

Methodology

- Single R(Z) per radar, set by forecasters and chosen from 5 pre-defined relations
- Capped at 75 ~ 150mm/hr depending on locations
- > Advances (vs. gauge-based QPE):
 - > Significantly improved resolution and coverage
 - > A major improvement for flash flood warnings

Photos by Alex Roeber, Hand County emergency management director

Single-Radar, Single-Pol (PPS)

► Issues:

- Contamination of non-hydrometeor echoes
- ► R(Z) uncertainties
- Sensitivity to Z calibration bias
 - 0.5dBZ bias would cause 8.6 (10.1)% error in QPE based on continental (tropical) R(Z) relations
- Range dependent errors
 - bright band
 - Overshooting of lower level precipitation processes
 - Evaporation below the lowest radar beam

Biological echoes ("blooms")/AP

Chaff

Single-Radar, Dual-Pol (DPR)

Methodology

- Hydrometeor Classification Algorithm (HCA)
- R(Z, Z_{DR}), R(K_{DP}), and R(Z) synthetic based on HCA
 R(Z, Z_{DR}) for light/mod rain: 1) Continental: R=0.007 Z^{0.927} Z_{DR}^{-3.43}
 2) Tropical: R=0.0142 Z^{0.770} Z_{DR}^{-1.67}
 - R (K_{DP}) for heavy rain and rain/hail mix: $R=44.0 | K_{DP} | ^{0.822}$
 - R(Z): $R = c^{*}0.017 Z^{0.714}$
 - Multiplier c is set to 0.6 for wet snow, 0.8 for graupel, and 2.8 for dry snow and crystals.

Single-Radar, Dual-Pol (DPR)

Methodology

- Hydrometeor Classification Algorithm (HCA)
- R(Z, Z_{DR}), R(K_{DP}), and R(Z) synthetic based on HCA
 R(Z, Z_{DR}) for light/mod rain: 1) Continental: R=0.007 Z^{0.927} Z_{DR}^{-3.43}
 2) Tropical: R=0.0142 Z^{0.770} Z_{DR}^{-1.67}

R (K_{DP}) for heavy rain and rain/hail mix: $R = 44.0 |K_{DP}|^{0.822}$

R(Z): $R = c^{*}0.017 Z^{0.714}$

Multiplier c is set to 0.6 for wet snow, 0.8 for graupel, and 2.8 for dry snow and crystals.

> Advances:

- Major improvements in the identification of nonhydrometeor echoes
- > Improvements in convective storms

Chaff

7

Biological echoes ("blooms")/AP

Single-Radar, Dual-Pol (DPR)

► Issues:

Sensitivity to Z & Z_{DR} calibration bias

dBZ	Z _{DR} (dB)	R (trop) (mm/hr)	R (cont) (mm/hr)
30	0.6	24.4	6.7
30	0.8 (+ <mark>0.2</mark>)	9.1 (-63%)	4.1 (-39%)
40	1	35.7	16.8
40	1.2 (<mark>+0.2</mark>)	19.1 (-46%)	12.4 (-26%)

- Underestimation in stratiform and tropical rain
- Range dependent errors
 - Bright band
 - Overshooting of lower level precipitation processes
 - Evaporation below the lowest radar beam

KAMX Z_{DR} bias 9/9/17

 $\Delta Z_{DR} \simeq +0.4 dB$

 $\Delta Z_{DP} \simeq -0.8 dB$

Multi-Radar, Single-Pol (Q3RAD)

Methodology

- Dual-pol QC
- Multiple R(Z) based on precipitation classification
- Tropical rain enhancement based on precip climatology (R=β*2.447x10⁻³*Z^{0.833}, β: 1~1.5)
- Vertical Profile of Refl (VPR) correction for bright band
- Physically based mosaic to minimize impact of virga and beam overshooting

> Advances

- Improved QPE accuracy in bright band and at far ranges
- Reduced underestimation bias in tropical and stratiform rain

Multi-Radar, Single-Pol (Q3RAD)

► Issues

- Uncertainties in R(Z) relationships
- Range dependent errors
 - Overshooting of lower level precipitation processes
 - Evaporation below the lowest radar beam

Multi-Radar, Dual-Pol (Q3DP)

Methodology

R(A), R(K_{DP}) and R(Z) synthetic based on hydrometeor phase and intensities

In melting layer and above: Multiple R(Z) with VPR correction

Below melting layer:

Z<48dBZ: R(A): $R = 4210 A^{1.03}$

Z \geq 48dBZ: R(K_{DP}): 1) $\rho_{HV} \geq$ 0.9: R=44.0 | K_{DP} | ^{0.822} 2) $\rho_{HV} \leq$ 0.9: R=29.0 | K_{DP} | ^{0.77}

Evaporation correction

Z: attenuated reflectivity

r₁ & r₂: beginning and ending ranges of rain segments in a given radial

11

$$C(b, PIA) = \exp(0.23bPIA) - 1$$

 $PIA(r_1, r_2) = \alpha \left[\phi_{DP}(r_2) - \phi_{DP}(r_1) \right]$

b: ≈ 0.62 a: determined in real-time

Ryzhkov et al. 2014; JTECH

Multi-Radar, Dual-Pol (Q3DP)

Advances

- insensitive to partial blockage
- Insensitive to calibration errors in Z and Z_{DR}
- Reduced overestimation in dry environment
- Improved accuracy in extreme heavy rain

KGRK calibration issues: Z bias \approx -4dBZ; Z_{DR} bias \approx -1.8dB

Gauge (in)

Evaporation correction

Martinaitis et al. 2018

Multi-Radar, Dual-Pol (Q3DP)

► Issues

Q3DP 24h 11Z 9/17/18

- Range dependent errors
 - Overshooting lower level precipitation enhancement due to warm rain or orographic processes
- Underestimation in light stratiform rain

Plot Scale 12 in \$

 $Z_{DR} \approx 0 \& Z_{DR} \text{ slope} \approx 0$

Advances at a Glance

Cocks 2018

QPE ↓	$\textbf{Gauge} \rightarrow$	VL	L	Μ	Н	E
Single radar Single-pol, 1 R(Z)	VL	0.800	0.244	0.034	0.001	0
	L	0.196	0.658	0.402	0.041	0.007
	М	0.004	0.098	0.548	0.712	0.185
	Н	0	0	0.013	0.181	0.308
	E	0	0	0.002	0.065	0.499
Single-radar Dual-pol R(Z, Z_{DR}), R(K_{DP}), R(Z)	VL	vl 0.897	0.384	м 0.066	н 0.001	е 0
	L	0.102	0.565	0.495	0.070	0.001
	Μ	0.001	0.050	0.432	0.747	0.303
	Н	0	0	0.007	0.169	0.445
	E	0	0	0	0.013	0.241
Multi-radar single-pol Multiple R(Z)s, VPR Corr	VL	0.804	0.133	0.002	0	0
	L	0.194	0.790	0.353	0.018	0.004
	Μ	0.002	0.076	0.628	0.592	0.142
	Н	0	0	0.015	0.324	0.344
	E	0	0	0.002	0.067	0.510
Multi-radar dual-pol R(A), R(K_{DP}), R(Z), VPR & Evap corr	VI	VL 0 849	0 155	м 0 009	н	E O
	L	0.149	0.753	0.286	0.010	0.002
	Μ	0.001	0.092	0.671	0.369	0.039
	Н	0	0	0.031	0.488	0.307
	E	0	0	0.002	0.133	0.751

CONUS, May 2017 – Apr 2018 QPE/gauge pairs: ~122K

- 'Hit' is when QPE category matched corresponding gauge category; otherwise, a 'Miss'
- Multi-radar outperformed single-radar QPEs in the High to Extreme categories
- R(A) performed the best in moderate to extreme categories.

24hr Acc Categories:

Very Lgt.(VL): G < 12.7mmLgt. (L): $12.7 \le G < 38.1mm$ Mdt (M): $38.1 \le G < 101.6mm$ Hvy (H): $101.6 \le G < 152.4mm$ Ext (E): $G \ge 152.4mm$

Advances at a Glance

PPS

Gauge Totals in mm

15

May-Sep 2017; east of -105W gauges: 41,750

May-Sep 2017; west of -105W gauges: 3,936

Oct 2017 – Apr 2018; east of -105W gauges: 25,259

Oct 2017 – Apr 2018; west of -105W gauges: 9,476

Gauge Totals in mm

Q3RAD

Gauge Totals in mm

Q3DP

Cocks 2018

DPR

Prod	Q/G bias	CC	MAE (mm)
PPS	0.94	0.86	9.4
DPR	0.81	0.86	9.5
Q3RAD	0.99	0.90	7.5
Q3DP	1.02	0.92	7.1
DDC	4.25	0.00	4.0
PPS	1.25	0.69	4.9
DPR	0.99	0.73	3.9
Q3RAD	1.37	0.71	4.9
Q3DP	1.22	0.83	3.7
PPS	0.82	0.86	9.4
DPR	0.63	0.82	10.7
Q3RAD	0.88	0.89	7.2
Q3DP	0.93	0.90	6.7
555		0.60	
PPS	1.11	0.63	8.5
DPR	0.56	0.65	8.0
Q3RAD	0.93	0.78	5.7
Q3DP	0.89	0.77	5.9

Color-coded range:

Gauge Totals in mm

Green: ≤ 75 km; Blue : 75 – 150km Yellow: 150 – 225 km; Red: > 225 km

Remaining Challenges

- 1) Radar data quality calibration, hardware issues
- 2) Underestimation in light stratiform rain
- 3) Partial/complete overshooting of precipitation processes
- 4) Uncertainties in snow water equivalent estimation
- 5) Quality of validation data at hourly and sub-hourly scales, especially for snow

Challenges: Radar Hardware Problem

Challenges: Snow, Quality of Hourly Gauges

To Address the Challenges

- 1) Radar data quality calibration, hardware issues
 - Radar hardware improvements
 - Software to mitigate the impact
- 2) Underestimation in light stratiform rain: more studies with radar data
- 3) Overshooting of precipitation processes at lower level and radar gaps:
 - VPR correction (for large scale, relatively homogenous systems)?
 - Gap-filling radars
 - Satellite and atmospheric models
- 4) Uncertainties in snow water equivalent (SWE) estimation
 - More basic studies
 - Initial experiment with WSR-88D dual-pol SWE estimation
- 5) Quality of validation data at hourly and sub-hourly scales, especially for snow
 - ✤ Multi-sensor gauge QC

Acknowledgment:

Steve Cocks, Steve Martinaitis, Lin Tang, Andrew Osborne, Micheal Simpson, Wolfgang Hanft, Carrie Langston, Brian Kaney and Ami Arthur

Thanks for your attention!

<u>Acknowledgment</u>: Steve Cocks, Steve Martinaitis, Lin Tang, Andrew Osborne, Micheal Simpson, Wolfgang Hanft, Carrie Langston, Brian Kaney and Ami Arthur