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Microphysics parameterization schemes 
in cloud, weather, and climate models
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The parameterization problem: 

c/o Wojciech Grabowski

There are two critical aspects for microphysics:
• Inability to resolve relevant scales (i.e., the traditional 

“parameterization problem” in models)

• Uncertainty in microphysics at its native scale (e.g., drop 
breakup or ice crystal growth rates)



A (very) brief history of cloud microphysics schemes…

• Bulk schemes  1960’s to present
- 1970’s-1980’s…  inclusion of ice microphysics
- 1980’s-2000’s…  2-moment schemes
- 2000’s-2010’s…  3-moment schemes
- 2000’s-2010’s…. ice particle property based schemes

• Bin schemes  1960’s to present
- 1980’s-2000’s…  inclusion of ice microphysics
- 1980’s-2000’s…  multi-moment (in each bin) schemes
- 2000’s-2010’s…. multi-dimensional (in bin space)

Log N’(D)

Diameter (D)Diameter (D)

Bin (explicit) Bulk

Size distribution 
assumed to follow 
functional form

Size distribution 
discretized  into 
bins

Log    
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Bulk schemes remain the workhorses of weather and 
climate models because they are simple and cheap. Lots 
of complexity has been added in recent years (e.g., 1-
moment to 2-moment schemes…). 

State-of-the-art 2-moment scheme



Added complexity (more detailed process formulations, more 
moments, more prognostic variables) means more degrees of 
freedom and (presumably) better realism in representing cloud 
evolution. Has this actually resulted in better forecasts?
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freedom and (presumably) better realism in representing cloud 
evolution. Has this actually resulted in better forecasts?

Ummm… maybe? For specific cases or well-constrained processes 
(e.g. size sorting) yes, but overall the picture is less clear…

Moreover, solution spread generally is not reduced by adding 
complexity.

Observations

WRF squall line simulations 
of June 20, 2007 OK case.

Morrison et al. (2015), JAS
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Bin schemes are expensive but widely used now as 
computer power keeps increasing.

• Process level microphysical studies
• Developing/testing bulk schemes

Have a more detailed representation of process rates 
than bulk schemes, but face challenges (Grabowski et al. 
2018, BAMS in review):

• Drop size distribution broadening may often be dominated by 
unphysical vertical numerical diffusion.

• Impact of statistical fluctuations on collision-coalescence 
neglected.

• Expensive to add rigorous treatment of N particle properties 
(scales as number of bins to power of N).

• Doesn’t address fundamental process rate uncertainty.



There is NOT better convergence using different bin 
schemes compared to bulk schemes…

Xue et al. (2017), 
MWR

Intercomparison 
of bin 
microphysics 
schemes in WRF

Intercomparison of 
LES of shallow 
precipitating 
convection from RICO

vanZanten et al. (2011), 
JAMES



Lagrangian particle-based schemes (e.g., super-droplet 
method) address many difficulties facing bin schemes.

Shallow cumulus 
simulations using the 
University of Warsaw 
Lagrangian Cloud Model 
(led by Dziekan, 
Pawlowska)

Grabowski et al. (2018), 
in review, BAMS

Cloud water mixing ratio (g/kg) DSDs in the boxes indicated

However, there is still fundamental process rate uncertainty.
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Where things stand…
• There is a constant march toward  

increasing complexity of schemes.

• Progress has been made over the 
decades, but fundamentally 
microphysics is highly uncertain and will 
remain so into the foreseeable future: 

We have poor understanding of the 
underlying physics, especially for ice 
microphysics, and thus no benchmark!
(this is fundamentally different from 
dynamics, turbulence, and radiation but 
perhaps similar to e.g. land surface 
processes…) 

 Thus, there is generally NOT 
convergence using different schemes as 
schemes become more complex…

A microphysics 
scheme developer?
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As a community, we as 
microphysics scheme 

developers have not adequately 
confronted this uncertainty!

On the other hand, we now have a 
wealth of cloud/precip observations

for constraining schemes… 
Ground-based 
remote sensing

Aircraft 
in-situ

Surface in-situ 
(e.g. disdrometer) Satellite Etc.

...
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• Very challenging because we generally cannot measure 
microphysical processes directly, only their net effects 
on clouds and precipitation.

• As more complex schemes are developed this makes 
constraint with observations even more difficult!
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Some ideas for moving forward…
• Continue developing better process models (e.g. Lagrangian

particle based schemes) and constraining process rates (e.g. lab 
studies).

• Focus on the role of microphysics uncertainty, and leverage this to 
develop novel approaches that facilitate constraint by observations 
(e.g., statistical-physical schemes).

Simply stated: we want to incorporate (somewhat 
uncertain) observations into uncertain models in a 

rigorous way, and quantify model uncertainty. 

 this is a Bayesian problem, and we can therefore use 
Bayesian statistics to address it rigorously…

Presenter
Presentation Notes
Bayes Theorem is a statement about conditional probabilities. In simple words, it provides a way to relate conditional probabilities about hypothesis and evidence and invert the two. That is, given a hypothesis, what is the evidence with which it would be true? P(A,B) = P(B,A)*P(A)/P(B)




Example: A statistical-physical microphysics 
parameterization framework (BOSS):

Bayesian (we treat uncertainty robustly)

Observationally-constrained (scheme is 
rigorously informed by observations using MCMC)

Statistical-physical (we don’t want just a 
statistical scheme or rely solely on standard 
machine learning, but we will use statistics and 
automated learning)

Scheme (bulk microphysics parameterization 
scheme, currently warm cloud-rain only)

Morrison et al., in prep. (scheme description)
van Lier-Walqui et al., in prep. (application of MCMC)



Posterior 
parameter PDFs 
from “obs” 
constraint

Forward 
simulated from 
joint PDFs with 
independent 
randomly 
selected IC’s

BOSS schematic

TRUTH

BOSS
van Lier-Walqui et al., 

in prep. 
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Concluding Remarks
• The parameterization of microphysics is currently 

dominated by uncertainty, and will be into the 
foreseeable future  no benchmark!!!

 Reducing uncertainty will require continued advances       
in observing clouds and precip (including lab studies)

 Confronting uncertainty may also require a 
re-thinking of scheme design:

 simplification, reducing the number of poorly constrained 
parameters, i.e., the level of complexity should match our 
fundamental knowledge of the physics and our ability to inform 
schemes with observations

 statistical methods and automated learning to rigorously 
constrain schemes using observations and to characterize 
uncertainty (e.g., BOSS)



Thank you!
Questions?



Unphysical size distribution broadening from vertical 
numerical diffusion may often dominate bin model solutions!

1DParcel
Morrison et al. 

(2018), in press JAS





The role of uncertainty in microphysics schemes

• Fundamentally, microphysics is highly uncertain and will 
remain so into the foreseeable future: 

We have poor understanding of the underlying physics, 
especially for ice microphysics, and thus no benchmark!
(this is fundamentally different from dynamics, turbulence, radiation 
but perhaps similar to e.g. land surface processes…) 

 There is NOT convergence using different schemes as schemes 
become more complex…

Xue et al. (2017), 
MWR

Intercomparison 
of bin 
microphysics 
schemes in WRF



The BIG question:

How to use these observations to constrain schemes?

• Very challenging because we generally cannot measure 
microphysical processes directly, only their net effects 
on clouds and precipitation.

• As more complex schemes are developed this makes 
constraint with observations even more difficult!

Simply stated: we want to incorporate (somewhat 
uncertain) observations into uncertain models in a 

rigorous way. 

 this is a Bayesian problem, and we can therefore use 
Bayesian statistics to address it rigorously…

Presenter
Presentation Notes
Bayes Theorem is a statement about conditional probabilities. In simple words, it provides a way to relate conditional probabilities about hypothesis and evidence and invert the two. That is, given a hypothesis, what is the evidence with which it would be true? P(A,B) = P(B,A)*P(A)/P(B)



Some potential applications:

• Microphysical process “fingerprinting”

• Quantification of process uncertainty/sensitivity in 
system-wide context

• Quantifying information content from observations

• Stochastic microphysics (stochastic sampling from the 
parameter PDFs)  ensemble prediction

Stay tuned for Marcus’s 
seminar on April 5!
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Bin microphysics coalescence model

Berry and Reinhardt (1974)
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“Warm rain” coalescence process:
 2-moment, 2-category bulk schemes model this process well

Liquid Phase



GRAUPEL
ρg = 400 kg m-3

m = (π/6 ρg)D3

V = agDbg

HAIL
ρh = 900 kg m-3

m = (π/6 ρh)D3

V = ahDbh

“SNOW”
ρs = 100 kg m-3

m = cD2

V = asDbs

 abrupt / 
unphysical 

conversions

CLOUD ICE
ρi = 500 kg m-3

m = (π/6 ρs)D3

V = aiDbi

Problems with pre-defined ice categories:
1. Real ice particles have complex shapes

2. Conversion between categories is ad-hoc

3. Conversion leads to large, discrete changes in 
particle properties

NOTE:   Bin microphysics schemes have the identical problem

Observed crystals:

Ice Phase
Traditional bulk approach:

c/o Alexi Korolev
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The simulation of ice-containing cloud systems is often
very sensitive to how ice is partitioned among categories

MOR-hail (only)

MY2 - hail (only)

MOR-graupel (only)

MY2-baseline (g + h)

Morrison and Milbrandt (2011), MWR

• idealized 1-km 
WRF simulations 
(em_quarter_ss)

• base reflectivity

Microphysics Schemes:
MOR: Morrison et al. (2005, 2009)
MY2:  Milbrandt and Yau (2005)
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• Predicted rime/axis ratio (bin scheme) – Hashino and Tropoli (2007)
• Predicted rime fraction – Morrison and Grabowski (2008),

Lin and Colle (2011) (diagnostic Fr)
• Predicted crystal axis ratio and density – Harrington et al. (2013), 

Jensen et al. (2017)
• Predicted Particle Properties (P3) - Morrison and Milbrandt (2015)

Recent shift (in parameterization of ice phase):

Representation by fixed hydrometeor categories
to

Prediction of hydrometeor properties



2. Overview of the P3 
microphysics scheme 



Compared to traditional schemes (for ice phase), P3:
• avoids some necessary evils (ad-hoc category conversion, fixed properties)
• is better linked to observations
• is more computationally efficient

New Bulk Microphysics Scheme:

Predicted Particle Properties (P3)

Morrison and Milbrandt (2015), JAS - Part 1  
Morrison et al. (2015), JAS - Part 2
Milbrandt and Morrison (2016), JAS - Part 3

NEW CONCEPT
“free” ice category – predicted properties, thus freely evolving type

vs.
“pre-defined” ice category – traditional; prescribed properties

(e.g. “ice”, “snow”, “graupel”, etc.)



LIQUID PHASE: 2 categories, 2-moment:
Qc – cloud mass mixing ratio [kg kg-1]

Qr – rain mass mixing ratio [kg kg-1]

Nc – cloud number mixing ratio [#kg-1]

Nr – rain number mixing ratio [#kg-1]

Overview of P3 Scheme

ICE PHASE: nCat categories, 4 prognostic variables each: 
Qdep(n) – deposition ice mass mixing ratio [kg kg-1]

Qrim(n) – rime ice mass mixing ratio [kg kg-1]

Ntot(n)  – total ice number mixing ratio [# kg-1]

Brim(n) – rime ice volume mixing ratio [m3 kg-1]

Prognostic Variables: (advected)



Qdep – deposition ice mass mixing ratio [kg kg-1]

Qrim – rime ice mass mixing ratio [kg kg-1]

Ntot – total ice number mixing ratio [# kg-1]

Brim – rime ice volume mixing ratio [m3 kg-1]

Prognostic Variables:

Predicted Properties:
Frim – rime mass fraction,  Frim = Qrim / (Qrim + Qdep) [--]

ρrim – rime density, ρrim = Qrim / Brim [kg m-3]

Dm – mean-mass diameter, Dm ∝ Qtot / Ntot [m]

Vm – mass-weighted fall speed, Vm = f(Dm, ρrim, Frim) [m s-1]
etc.

A given (free) category can represent any type of ice-phase hydrometeor

Diagnostic Particle Types:
Based on the predicted properties (rather than pre-defined)

Overview of P3 Scheme



P3 SCHEME – Determining m(D) = αDβ for regions of D:
Similar for A(D); V(D) calculated from m and A…

ICE INITIATION VAPOR GROWTH
RIME COLLECTION IN 

CRYSTAL INTERSTICESAGGREGATION

D D D DD

Conceptual model of particle growth following Heymsfield (1982):

unrimed crystals
α = const
β ~ 2

partially rimed crystal
α = f(Frim, ρrim)
β ~ 2

spherical ice
α = π/6 ρbulk_ice
β = 3

spherical graupel
α = f(Frim, ρrim) 
β = 3
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3D Squall Line case:
(June 20, 2007 central Oklahoma)

• WRF_v3.4.1, ∆x = 1 km, ∆z ~ 250-300 m, 112 x 612 x 24 km domain
• initial sounding from observations
• convection initiated by u-convergence
• no radiation, surface fluxes

Morrison et al. (2015), JAS



WRF Results: Line-averaged Reflectivity (t = 6 h)

Observations
dBZ

MOR-G

MOR-H

THO

WSM6

WDM6P3

MY2

Morrison et al. (2015), JAS



Ice Particle Properties:

Δ

Δ

Δ

Δ

Ο Ο

ΟΟ

Fr ~ 0-0.1
ρ ~ 900 kg m-3
V ~ 0.3 m s-1

Dm ~ 100 μm
 small crystals

ΟFr ~ 0
ρ ~ 50 kg m-3
V ~ 1 m s-1

Dm ~ 3 mm
 aggregates

ΔFr ~ 1
ρ ~ 900 kg m-3

V > 10 m s-1

Dm > 5 mm
 hail

etc.

Fr

Vm Dm

ρp

Note – only one (free) category

Morrison et al. (2015), JAS

Vertical cross section of 
model fields (t = 6 h)



Simulated lowest level REFLECTIVITY
(00 UTC December 14)

Frontal/orographic case: 
IMPROVE-2, 13-14 December 2001

• WRF_v3.4.1, ∆x = 3 km, 72 stretched vertical levels

Accumulated PRECIPITATION
(14 UTC Dec 13 - 08 UTC Dec 14)

Morrison et al. (2015), JAS



Low-density, unrimed 
snow

Low-density graupel

Small, dense ice

Z qi

qrqc

Fr

Vm Dm

ρp

Z

Δ
Ο



Scheme Squall line case Orographic case # prognostic 
variables

P3 – 1 Cat 1.043 1.013 7

MY2 1.485 1.495 12

MOR-H 1.203 1.200 9

THO 1.141 1.174 7

WSM6 1.000 1.000 5

WDM6 1.170 1.148 8

• Times relative to those of WSM6 are indicated parenthetically.

Timing Tests for 3D WRF Simulations

 P3 in WRF is relatively fast…

Morrison et al. (2015), JAS



Issues with advection and microphysics…

• Much of the cost of microphysics schemes is advecting 
hydrometeor variables (a few % total run time per scalar in 
WRF).

• A new method called Scaled Flux Vector Transport can 
reduce the cost of advection for multi-moment bulk schemes 
including P3 (Morrison et al. 2016, MWR). 
 advects the mass mixing ratio variables using the unmodified scheme  

and the “secondary” variables (e.g. number mixing ratios) by 
appropriately scaling the mass mixing ratio fluxes.

 Total model run time for P3 reduced by ~10% while producing very 
similar solutions and retaining accuracy in analytic benchmark tests.



So far – despite using only 1 ice-phase category, P3 performs 
well compared to detailed, established (well-tuned), traditional 
bulk schemes

+ =

LARGE GRAUPEL INITIATION
(of small crystals)

SMALL GRAUPEL

+ =

LARGE GRAUPEL INITIATION
(of small crystals)

SMALL GRAUPEL

The large (mean) sizes have 
been lost due to dilution

However – with 1 category, P3 has some intrinsic limitations:
• it cannot represent more than one bulk type of particle in the same point 

in time and space
• As a result, there is an inherent “dilution problem”; the properties of 

particle populations from different origins get averaged upon mixing    



Single-Category Version

All ice-phase hydrometeors represented by a single category,
with Qdep, Qrim, Ntot, Brim

Processes: 1. Initiation of new particles
2. Growth/decay processes

- interactions with water vapor
- interactions with liquid water
- self-collection

3. Sedimentation

Multi-Category Version

All ice-phase hydrometeors represented by a nCat categories,
with Qdep(n), Qrim(n), Ntot(n), Brim(n) [n = 1..nCat]

Processes: 1. Initiation of new particles  determine destination category
2. Growth/decay processes

- interactions with water vapor
- interactions with liquid water
- self-collection
- collection amongst other ice categories

3. Sedimentation

Morrison and Milbrandt (2015) [P3, part 1]

Milbrandt and Morrison (2016) [P3, part 3]



WRF Results: Line-averaged Reflectivity* (t = 6 h)

dBZ
Observations

P3 - 1 category
w/o H-M*

P3 - 2 category
w/ H-M*

Morrison et al. (2015), JAS
*Hallet-Mossop rime splintering  generation of new crystals
splintering of rimed ice 

**Uses WRFV3.9.1 instead of V3.5.1 in earlier slides. 



Current Status of P3 (in WRF)

Spring 2017: Released in WRFV3.9

• MP option 50 (Single category P3 with specified cloud 
droplet number)

• MP option 51 (Single category P3 with prognostic cloud 
droplet number and simple coupling with aerosols)

August 2017: P3 code updated for WRFV3.9.1 release

Spring 2018: To be released in WRFV4.0

• MP option 52 (Two-category P3 with prognostic cloud 
droplet number and simple coupling with aerosols)

• Updates to single-category P3 options



Status for real-time NWP
NOAA NSSL Spring Hazardous Weather Testbed

• Run in the OU CAPS WRF ensemble since 2014 

Operational NWP in Canada

• Currently (as of Jan 2018) running in ECCC’s operational 
high-resolution 3 km pan-Arctic system in support of the 
International Year of Polar Prediction (YOPP) experiment

• To be implemented (summer 2018) into ECCC’s operational 
high-resolution 2.5 km pan-Canadian NWP system

• Currently being adapted for planned use in coarser grid 
ECCC operational NWP systems 



Climate modeling…
Community Atmosphere Model version 5 (CAM5)

www.nasa.gov



Eidhammer et al. (2017), J. Climate

The physical basis of ice 
microphysics is improved while 
not “breaking” the simulated 
climate…

Simplified P3 implemented in CAM5

Total cloud radiative forcing



3. Current developments 
and broader outlook + 

commentary

(a.k.a. the part of the talk I will say 
controversial things…)



Broader outlook
• There is a steady march towards greater complexity in 

microphysics schemes in weather and climate models. 
Does this always make sense?
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microphysics schemes in weather and climate models. 
Does this always make sense?

With increased scheme complexity comes:
- larger number of parameters that are often poorly constrained
- greater challenge in systematically constraining with observations
- greater cost which could be used for other modeling aspects 

(e.g., increased grid resolution)



There will be a role for simple 
microphysics schemes in the future…

P3 and BOSS were 
developed in this spirit.

Broader outlook
• There is a steady march towards greater complexity in 

microphysics schemes in weather and climate models. 
Does this always make sense?

With increased scheme complexity comes:
- larger number of parameters that are often poorly constrained
- greater challenge in systematically constraining with observations
- greater cost which could be used for other modeling aspects 

(e.g., increased grid resolution)
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EXTRA



What we want in advection schemes 
(for clouds/precip):

• Positive definite for mass (needed for water conservation), 
or even better monotonic, but not as critical for non-mass 
microphysical variables

• Preserves initial linear relationships between advected 
quantities

• Accurate

• Efficient

There are trade-offs!



WRF Results:  Base Reflectivity (1 km AGL, t = 6 h)

MOR-G

MOR-H

THO
Observations

WSM6

WDM6P3

dBZ

MY2

Morrison et al. (2015) [P3, part 2]



1D analytic 
test cases

Mean error as a 
function of Courant 
number



Issues with advection and microphysics…

• The traditional approach is to advect each 
cloud/precipitation prognostic variable independently.

• Potential problems:

- Slow

- Derived quantities (e.g., ratios) may not be monotonic even 
if each scalar is advected using a monotonic scheme



New method: Scaled Flux Vector Transport
Morrison et al. (2016, MWR)

Scales mass mixing ratio fluxes to advect 
“secondary” microphysical scalars:

1) Mass mixing ratio (Q) quantities are advected using the 
unmodified scheme

2) “Secondary” non-mass scalars (N, Z, V, etc.) then advected 
by scaling of Q fluxes using higher-order linear weighting



New method: Scaled Flux Vector Transport
Morrison et al. (2016, MWR)

Scales mass mixing ratio fluxes to advect 
“secondary” microphysical scalars:

1) Mass mixing ratio (Q) quantities are advected using the 
unmodified scheme

2) “Secondary” non-mass scalars (N, Z, V, etc.) then advected 
by scaling of Q fluxes using higher-order linear weighting

Retains features of applying unmodified scheme 
to ALL scalars, but at a reduced cost..
 Accurate (for analytic test cases), fast, and preserves 
initial linear relationships



WRF-PD (5th order 
horizontal 3rd order 
vertical)

WRF-PD w/ SFVT

11% reduction in 
total model run time

Morrison et al. (2016), MWR

WRF 2D squall line test

t = 4 h



• The efficiency of SFVT increases as the number 
of secondary scalars increases relative to the 
number of mass variables. 

• Thus SFVT works well with P3 because there 
are 3 secondary variables for each “free” ice 
category.

• It is particularly well-suited for bin schemes 
using the total bulk mass as the “lead” 
variables and the individual bin 
masses/numbers as the secondary scalars.



P3-like modifications to CAM5

• Modification of Morrison-Gettelman version 2 (MG2) 
scheme to combine “cloud ice” and “snow” in a single 
ice category and use physical representations of mass-
size (m-D) and projected area-size (A-D) relationships.

• Allows consistent linkages between fallspeed and 
effective radius (both depending on m-D and A-D), and 
removes the need for cloud ice to snow autoconversion.

• Two methods for specifying m-D and A-D:

- P3: constant m-D and A-D parameters, follows original P3 except 
representation of rimed ice is neglected

- EM16: varying m-D and A-D parameters from Erfani and Mitchell 
(2016)

Eidhammer et al. (2017), J. Climate



WRF Results: Line-averaged precipitation rate at 
1 km height

Time-
averaged 
from 6-7 h

Morrison et al. 
(2015), JAS
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