Uncertainty in model representations of microphysics…

…or: *Airing the dirty laundry of microphysics schemes*

Hugh Morrison

MMM Laboratory, National Center for Atmospheric Research

Thanks to: Marcus van Lier-Walqui, Wojciech Grabowski

OU/CIMMS Workshop on Uncertainty in Radar Retrievals, Model Parameterizations, Assimilated Data and In-situ Observations: Implications for the Predictability of Weather

October 31, 2018

Microphysics parameterization schemes in cloud, weather, and climate models

The parameterization problem:

There are *two* **critical aspects for microphysics:**

- *Inability to resolve relevant scales (i.e., the traditional "parameterization problem" in models)*
- *Uncertainty in microphysics at its native scale (e.g., drop breakup or ice crystal growth rates)*

A (very) brief history of cloud microphysics schemes…

- **Bulk schemes 1960's to present**
	- **- 1970's-1980's…** *inclusion of ice microphysics*
	- **- 1980's-2000's…** *2-moment schemes*
	- **- 2000's-2010's…** *3-moment schemes*
	- **- 2000's-2010's….** *ice particle property based schemes*
- Bin schemes \rightarrow 1960's to present
	- **- 1980's-2000's…** *inclusion of ice microphysics*
	- **- 1980's-2000's…** *multi-moment (in each bin) schemes*
	- **- 2000's-2010's….** *multi-dimensional (in bin space)*

Bulk schemes remain the workhorses of weather and climate models because they are simple and cheap. Lots of complexity has been added in recent years (e.g., 1 moment to 2-moment schemes…).

State-of-the-art 2-moment scheme

Added complexity (more detailed process formulations, more moments, more prognostic variables) means more degrees of freedom and (presumably) better realism in representing cloud evolution. *Has this actually resulted in better forecasts?*

Added complexity (more detailed process formulations, more moments, more prognostic variables) means more degrees of freedom and (presumably) better realism in representing cloud evolution. *Has this actually resulted in better forecasts?*

Ummm… maybe? For specific cases or well-constrained processes (e.g. size sorting) yes, but overall the picture is less clear…

Moreover, solution spread generally is *not* **reduced by adding complexity.**

Added complexity (more detailed process formulations, more moments, more prognostic variables) means more degrees of freedom and (presumably) better realism in representing cloud evolution. *Has this actually resulted in better forecasts?*

Ummm… maybe? For specific cases or well-constrained processes (e.g. size sorting) yes, but overall the picture is less clear…

Moreover, solution spread generally is *not* **reduced by adding complexity.**

Bin schemes are expensive but widely used now as computer power keeps increasing.

- **Process level microphysical studies**
- **Developing/testing bulk schemes**

Have a more detailed representation of process rates than bulk schemes, but face challenges (*Grabowski et al. 2018, BAMS in review***):**

- **Drop size distribution broadening may often be dominated by** *unphysical* **vertical numerical diffusion.**
- **Impact of statistical fluctuations on collision-coalescence neglected.**
- **Expensive to add rigorous treatment of** *N* **particle properties (scales as number of bins to power of** *N***).**
- **Doesn't address** *fundamental process rate uncertainty***.**

There is NOT better convergence using different bin schemes compared to bulk schemes…

Lagrangian particle-based schemes (e.g., *super-droplet method***) address many difficulties facing bin schemes.**

Cloud water mixing ratio (g/kg) DSDs in the boxes indicated

Shallow cumulus simulations using the University of Warsaw Lagrangian Cloud Model (led by Dziekan, Pawlowska)

Grabowski et al. (2018), *in review, BAMS*

However, there is *still fundamental process rate uncertainty***.**

Where things stand…

• **There is a constant march toward increasing complexity of schemes.**

Where things stand…

- **There is a constant march toward increasing complexity of schemes.**
- **Progress has been made over the decades, but fundamentally microphysics is** *highly uncertain* **and will remain so into the foreseeable future:**
	- **→ We have poor understanding of the underlying physics, especially for ice microphysics, and thus** *no benchmark***! (this is fundamentally different from dynamics, turbulence, and radiation but perhaps similar to e.g. land surface processes…)**
	- **→ Thus, there is generally NOT convergence using different schemes as schemes become more complex…**

A microphysics scheme developer?

As a community, we as microphysics scheme developers have *not* **adequately confronted this uncertainty!**

As a community, we as microphysics scheme developers have *not* **adequately confronted this uncertainty!**

On the other hand, we now have a wealth of cloud/precip observations for constraining schemes…

The BIG question:

How **to use these observations to constrain schemes?**

The BIG question:

How **to use these observations to constrain schemes?**

- **Very challenging because we generally cannot measure microphysical processes directly, only their net effects on clouds and precipitation.**
- **As more complex schemes are developed this makes constraint with observations even more difficult!**

-
-
-
- -
	-
-

• **Continue developing better process models (e.g.** *Lagrangian particle based schemes***) and constraining process rates (e.g.** *lab studies***).**

- **Continue developing better process models (e.g.** *Lagrangian particle based schemes***) and constraining process rates (e.g.** *lab studies***).**
- **Focus on the role of microphysics uncertainty, and leverage this to develop novel approaches that facilitate constraint by observations (e.g., statistical-physical schemes).**

- **Continue developing better process models (e.g.** *Lagrangian particle based schemes***) and constraining process rates (e.g.** *lab studies***).**
- **Focus on the role of microphysics uncertainty, and leverage this to develop novel approaches that facilitate constraint by observations (e.g., statistical-physical schemes).**

Simply stated: we want to incorporate (somewhat uncertain) observations into uncertain models in a rigorous way, and quantify model uncertainty.

 this is a Bayesian problem, and we can therefore use Bayesian statistics to address it rigorously…

Example: A *statistical-physical* **microphysics parameterization framework (BOSS):**

Bayesian (we treat uncertainty robustly)

Observationally-constrained **(scheme is rigorously informed by observations using MCMC)**

Statistical-physical **(we don't want just a statistical scheme or rely solely on standard machine learning, but we will use statistics and automated learning)**

Scheme (bulk microphysics parameterization **scheme, currently warm cloud-rain only)**

> *Morrison et al., in prep. (scheme description) van Lier-Walqui et al., in prep. (application of MCMC)*

BOSS schematic

Concluding Remarks

• **The parameterization of microphysics is currently dominated by** *uncertainty***, and will be into the foreseeable future** \rightarrow **no benchmark!!!**

Concluding Remarks

- **The parameterization of microphysics is currently dominated by** *uncertainty***, and will be into the foreseeable future** \rightarrow **no benchmark!!!**
	- $→$ **Reducing uncertainty will require continued advances in** *observing* **clouds and precip (including lab studies)**

Concluding Remarks

- **The parameterization of microphysics is currently dominated by** *uncertainty***, and will be into the foreseeable future** \rightarrow **no benchmark!!!**
	- $→$ **Reducing uncertainty will require continued advances in** *observing* **clouds and precip (including lab studies)**
	- **Confronting uncertainty may also require a re-thinking of** *scheme design***:**
		- *simplification***, reducing the number of poorly constrained parameters, i.e., the level of complexity should match our fundamental knowledge of the physics and our ability to inform schemes with observations**
		- *statistical methods* **and** *automated learning* **to rigorously constrain schemes using observations and to characterize uncertainty (e.g., BOSS)**

Thank you! Questions?

Unphysical **size distribution broadening from vertical numerical diffusion may often dominate bin model solutions!**

The role of uncertainty in microphysics schemes

- **Fundamentally, microphysics is** *highly uncertain* **and will remain so into the foreseeable future:**
	- → We have poor understanding of the underlying physics, **especially for ice microphysics, and thus** *no benchmark***! (this is fundamentally different from dynamics, turbulence, radiation but perhaps similar to e.g. land surface processes…)**
	- **There is NOT convergence using different schemes as schemes become more complex…**

The BIG question:

How **to use these observations to constrain schemes?**

- **Very challenging because we generally cannot measure microphysical processes directly, only their net effects on clouds and precipitation.**
- **As more complex schemes are developed this makes constraint with observations even more difficult!**

Simply stated: we want to incorporate (somewhat uncertain) observations into uncertain models in a rigorous way.

 this is a Bayesian problem, and we can therefore use Bayesian statistics to address it rigorously…

Some potential applications:

- **Microphysical process "fingerprinting"**
- **Quantification of process uncertainty/sensitivity in system-wide context**
- **Quantifying information content from observations**
- **Stochastic microphysics (stochastic sampling from the parameter PDFs) ensemble prediction**

Stay tuned for Marcus's seminar on April 5!

Liquid Phase

"Warm rain" coalescence process:

2-moment, 2-category bulk schemes model this process well

Ice Phase

Traditional bulk approach:

unphysical conversions

Problems with pre-defined ice categories:

- **1. Real ice particles have complex shapes**
- **2. Conversion between categories is ad-hoc**
- **3. Conversion leads to large, discrete changes in particle properties**
- NOTE: *Bin microphysics schemes have the identical problem*

Observed crystals:

c/o Alexi Korolev

The simulation of ice-containing cloud systems is often *very sensitive* to how ice is partitioned among categories

Morrison and Milbrandt (2011), *MWR*

The simulation of ice-containing cloud systems is often *very sensitive* to how ice is partitioned among categories

Recent shift (in parameterization of ice phase)**:**

Representation by fixed hydrometeor *categories* to Prediction of hydrometeor *properties*

- Predicted rime/axis ratio (bin scheme) *– Hashino and Tropoli (2007)*
- Predicted rime fraction *Morrison and Grabowski (2008), Lin and Colle (2011) (diagnostic Fr)*
- Predicted crystal axis ratio and density *Harrington et al. (2013), Jensen et al. (2017)*

• Predicted Particle Properties (P3) - *Morrison and Milbrandt (2015)*

2. Overview of the P3 microphysics scheme

New Bulk Microphysics Scheme:

Predicted Particle Properties (P3)

NEW CONCEPT

"free" ice category – predicted properties, thus freely evolving type

vs.

"pre-defined" ice category – traditional; prescribed properties (e.g. "ice", "snow", "graupel", etc.)

Compared to traditional schemes (for ice phase), P3:

- avoids some necessary evils (ad-hoc category conversion, fixed properties)
- is better linked to observations
- is more computationally efficient

Morrison and Milbrandt (2015), *JAS* - Part 1 Morrison et al. (2015), *JAS* - Part 2 Milbrandt and Morrison (2016), *JAS* - Part 3

Overview of P3 Scheme

Prognostic Variables: (advected)

A given (*free)* category can represent any type of ice-phase hydrometeor

\mathbf{Q}_{dep} – deposition ice mass mixing ratio $[kg \, kg^{-1}]$ Q_{rim} – rime ice mass mixing ratio Q_{rim} – rime ice mass mixing ratio N_{tot} – total ice number mixing ratio N_{tot} – total ice number mixing ratio B_{rim} – rime ice volume mixing ratio $[m^3 \text{ kg}^{-1}]$ *Prognostic Variables:*

Predicted Properties:

Diagnostic Particle Types:

Based on the predicted properties (rather than pre-defined)

P3 SCHEME – Determining $m(D) = \alpha D^{\beta}$ for regions of *D*: **Similar for** *A***(***D***);** *V***(***D***) calculated from** *m* **and** *A***…**

Conceptual model of particle growth following Heymsfield (1982):

3D Squall Line case: (June 20, 2007 central Oklahoma)

mh

- WRF v3.4.1, $\Delta x = 1$ km, $\Delta z \sim 250$ -300 m, 112 x 612 x 24 km domain
- initial sounding from observations
- convection initiated by *u*-convergence
- no radiation, surface fluxes

eflectivity (dBZ

Morrison et al. (2015), *JAS*

WRF Results: Line-averaged Reflectivity (t = 6 h)

etc.

Morrison et al. (2015), *JAS*

Frontal/orographic case: IMPROVE-2, 13-14 December 2001

• WRF_v3.4.1, $\Delta x = 3$ km, 72 stretched vertical levels

Simulated lowest level **REFLECTIVITY** (00 UTC December 14)

Accumulated **PRECIPITATION** (14 UTC Dec 13 - 08 UTC Dec 14)

Morrison et al. (2015), *JAS*

Timing Tests for 3D WRF Simulations

• Times relative to those of WSM6 are indicated parenthetically.

→ P3 in WRF is relatively fast...

Issues with advection and microphysics…

- Much of the cost of microphysics schemes is advecting hydrometeor variables (a few % total run time per scalar in WRF).
- A new method called *Scaled Flux Vector Transport* can reduce the cost of advection for multi-moment bulk schemes including P3 (Morrison et al. 2016, *MWR*).
	- \rightarrow advects the mass mixing ratio variables using the unmodified scheme and the "secondary" variables (e.g. number mixing ratios) by appropriately scaling the mass mixing ratio fluxes.
	- \rightarrow Total model run time for P3 reduced by ~10% while producing very similar solutions and retaining accuracy in analytic benchmark tests.

So far – despite using only 1 ice-phase category, P3 performs well compared to detailed, established (well-tuned), traditional bulk schemes

However – with 1 category, P3 has some *intrinsic limitations*:

- it cannot represent more than one bulk type of particle in the same point in time and space
- As a result, there is an inherent "*dilution problem*"; the properties of particle populations from different origins get averaged upon mixing

Single-Category Version

All ice-phase hydrometeors represented by a single category, with Q_{dep} , Q_{rim} , N_{tot} , B_{rim}

- Processes: 1. Initiation of new particles
	- 2. Growth/decay processes
		- interactions with water vapor
		- interactions with liquid water
		- self-collection
	- 3. Sedimentation

Multi-Category Version

Milbrandt and Morrison (2016) [P3, part 3]

All ice-phase hydrometeors represented by a *nCat* **categories**, with $Q_{dep}(\bm{n})$, $Q_{rim}(\bm{n})$, $N_{tot}(\bm{n})$, $B_{rim}(\bm{n})$ [$n = 1..nCat$]

- Processes: 1. Initiation of new particles \rightarrow **determine destination category**
	- 2. Growth/decay processes
		- interactions with water vapor
		- interactions with liquid water
		- self-collection
		- **collection amongst other ice categories**
	- 3. Sedimentation

WRF Results: Line-averaged Reflectivity* (t = 6 h)

Morrison et al. (2015), *JAS*

*Hallet-Mossop rime splintering \rightarrow generation of new crystals splintering of rimed ice

**Uses WRFV3.9.1 instead of V3.5.1 in earlier slides.

Current Status of P3 (in WRF)

THE WEATHER RESEARCH & FORECASTING MODEL

Spring 2017: Released in WRFV3.9

- *MP option* **50 (Single category P3 with specified cloud droplet number)**
- *MP option* **51 (Single category P3 with prognostic cloud droplet number and simple coupling with aerosols)**

August 2017: P3 code updated for WRFV3.9.1 release

Spring 2018: To be released in WRFV4.0

- *MP option* **52 (Two-category P3 with prognostic cloud droplet number and simple coupling with aerosols)**
- **Updates to single-category P3 options**

Status for real-time NWP

NOAA NSSL Spring Hazardous Weather Testbed

• **Run in the OU CAPS WRF ensemble since 2014**

Operational NWP in Canada

Environment and Climate Change Canada Environnement et Changement climatique Canada

- **Currently (as of Jan 2018) running in ECCC's operational high-resolution 3 km pan-Arctic system in support of the International Year of Polar Prediction (YOPP) experiment**
- **To be implemented (summer 2018) into ECCC's operational high-resolution 2.5 km pan-Canadian NWP system**
- **Currently being adapted for planned use in coarser grid ECCC operational NWP systems**

Climate modeling…

Community Atmosphere Model version 5 (CAM5)

www.nasa.gov

Simplified P3 implemented in CAM5

3. Current developments and broader outlook + commentary

(a.k.a. the part of the talk I will say controversial things…)

Broader outlook

• **There is a steady march towards** *greater complexity* **in microphysics schemes in weather and climate models.** *Does this always make sense?*

Broader outlook

- **There is a steady march towards** *greater complexity* **in microphysics schemes in weather and climate models.** *Does this always make sense?*
	- **With increased scheme complexity comes:**
	- **- larger number of parameters that are often poorly constrained**
	- **- greater challenge in systematically constraining with observations**
	- **- greater cost which could be used for other modeling aspects (e.g., increased grid resolution)**

Broader outlook

- **There is a steady march towards** *greater complexity* **in microphysics schemes in weather and climate models.** *Does this always make sense?*
	- **With increased scheme complexity comes:**
	- **- larger number of parameters that are often poorly constrained**
	- **- greater challenge in systematically constraining with observations**
	- **- greater cost which could be used for other modeling aspects (e.g., increased grid resolution)**

There will be a role for simple microphysics schemes in the future…

> **P3 and BOSS were developed in this spirit.**

Thanks!

Funding:

DOE ASR DE-SC0008648 DOE ASR DE-SC0005336 DOE ASR DE-SC0016579 DOE ASR DE-SC0016476 NASA NNX12AH90G NASA ROSES NSF base funding

EXTRA

What we want in advection schemes (for clouds/precip):

- Positive definite for mass (needed for water conservation), or even better monotonic, but not as critical for *non-mass* microphysical variables
- Preserves initial linear relationships between advected quantities
- Accurate
- Efficient

There are trade-offs!

WRF Results: Base Reflectivity (1 km AGL, t = 6 h)

Morrison et al. (2015) [P3, part 2]

1D analytic test cases

Mean error as a function of Courant number

Issues with advection and microphysics…

- The traditional approach is to advect each cloud/precipitation prognostic variable independently.
- **Potential problems:**
- Slow
- Derived quantities (e.g., ratios) may not be monotonic even if each scalar is advected using a monotonic scheme

New method: *Scaled Flux Vector Transport*

Morrison et al. (2016, *MWR*)

Scales mass mixing ratio fluxes to advect "secondary" microphysical scalars:

- 1) Mass mixing ratio (*Q*) quantities are advected using the unmodified scheme
- 2) "Secondary" non-mass scalars (*N*, *Z*, *V*, etc.) then advected by scaling of *Q* fluxes using higher-order linear weighting

New method: *Scaled Flux Vector Transport*

Morrison et al. (2016, *MWR*)

Scales mass mixing ratio fluxes to advect "secondary" microphysical scalars:

- 1) Mass mixing ratio (*Q*) quantities are advected using the unmodified scheme
- 2) "Secondary" non-mass scalars (*N*, *Z*, *V*, etc.) then advected by scaling of *Q* fluxes using higher-order linear weighting

Retains features of applying unmodified scheme to ALL scalars, but at a reduced cost..

 \rightarrow Accurate (for analytic test cases), fast, and preserves initial linear relationships

WRF 2D squall line test

 $t = 4 h$

WRF-PD (5th order horizontal 3rd order vertical)

WRF-PD w/ SFVT

11% reduction in *total* **model run time**

Morrison et al. (2016), *MWR*

• **The efficiency of** *SFVT* **increases as the number of secondary scalars increases relative to the number of mass variables.**

• **Thus** *SFVT* **works well with P3 because there are 3 secondary variables for each "free" ice category.**

• **It is particularly well-suited for bin schemes using the total bulk mass as the "lead" variables and the individual bin masses/numbers as the secondary scalars.**

P3-like modifications to CAM5

- **Modification of Morrison-Gettelman version 2 (MG2) scheme to combine "***cloud ice***" and "***snow***" in a single ice category and use physical representations of masssize (m-D) and projected area-size (A-D) relationships.**
- **Allows consistent linkages between fallspeed and effective radius (both depending on m-D and A-D), and removes the need for cloud ice to snow autoconversion.**
- **Two methods for specifying m-D and A-D:**

- *P3:* **constant m-D and A-D parameters, follows original P3 except representation of rimed ice is neglected**

- *EM16:* **varying m-D and A-D parameters from Erfani and Mitchell (2016)** Eidhammer et al. (2017), *J. Climate*

WRF Results: Line-averaged precipitation rate at 1 km height

