FROM ANALYTIC MODELS TO OSSES:
USING SYNTHETIC OBSERVATIONS TO
INFORM UAS CONFIGURATION

FOR ATMOSPHERIC
SENSING
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Determine the configuration and CONOPS of an
observing platform to maximize its value in the
forecasting process

O Heuristics for manual forecasting

CRP 1910281200 (Observed) MOARINYIS Storm Frodicton Conter

men, Uklshoma.
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Motivation Nebiaska

Determine the configuration and CONOPS of an
observing platform to maximize its value in the
forecasting process

2m @e (K) | 10m Wind (kis) | College of DuPage NEXLAB
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o NWP guidance




Motivation Nebiaska

Determine the configuration and CONOPS of an
observing platform to maximize its value in the

forecasting process

o Verification
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Motivation Nebiaska

The value of new observations can be assessed
through answers to the following:

O Are the data collected at the right time?
O Are the data collected in the right place?
O Are the data collected by the right instrument?

...and how right?¢



Motivation Nebiaska

ldeally we would collect data at multiple times, multiple
places, and with multiple instruments and see which
combination produces the largest impact on one or more
of the three components.




Motivation Nebiaska

Synthetic data

“Simulated” data, “collected” across the parameter
space defined by time, place, and instrument
configuration

Process > Synthetic data are inserted into a
component of the forecast process and the impact is
assessed.



Motivation Nebiaska

1. Analytic models
2. Large eddy simulations (LES)
3. Ensemble sensitivity analysis (ESA)

4. QObserving system simulations experiments (OSSE)



Analytic Models Nebidska

Lincoln

Atmospheric data are prescribed using an
analytic function

Simulated instrument is “operated” within this
idealized environment

0 Pros _Right time?
= Extensive parameter space can be E(Righ’r place?
lored . .
explore E(ngh’r instrument?
o Cons

® It’s analytic and therefore highly
simplified
® Not good for evaluating NWP skill



Analytic Models: Example Nebidska

“Sounding Characteristics that Yield Significant Convective
Inhibition Errors Due to Ascent Rate and Sensor Response of In-
Situ Profiling Systems”
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Analytic Models: Example

The sounding characteristics that result in the largest

Nebiaska

relative CIN errors are also the characteristics that

result in the smallest CIN

o Small d&dz|,

o Small D
o Small g,|,
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Analytic Models: Example Nebidska

Sounding characteristics that contribute to large CIN do
not proportionally increase the CIN error
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LES Nebiaska

Lincoln

Atmospheric data come from large eddy
simulations

Simulated instrument is “operated” within this
idealized environment

O Pros
O iiﬁ;gjmmeter space can be jRigh’r Hme?2
= Addresses all assessment components %Righ’r place?
o Cons Right instrument?

® Parameter space won’t be nearly as large as with analytic

approach because some of the parameter space would
require multiple LES

® Not good for evaluating NWP skill



LES: Example Nebidska

“The Impact of Sensor Response and Airspeed on the
Representation of the Convective Boundary Layer and

Airmass Boundaries by Small Unmanned Aircraft Systems”
(Houston and Keeler 2019, JAOT)

Determine UAS system capabilities required to
accurately represent thermodynamic properties of,
o The CBL

o Airmass boundaries

Specific focus on sensor response and aircraft speed
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Lincoln

CBL simulations:

0 Domain: 24 km x 24 km x 5 km
O Insolation: Mid-day, April 15, 40°N

O Rotary-wing aircraft
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Figure 1 from Houston and Keeler (201 8)



LES: Example

Airmass boundary simulations:

Domain: 244 km x 5 km (2D x-z)

Insolation: Mid-day, April 15, 40°N " S —

Initial cold block: -15 K

Fixed-wing aircraft

Nebiaska

Lincoln
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Figure 2 from Houston and
Keeler (2018)
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Response Time (s)

LES: Example Nebidska

For both the CBL and airmass boundary experiments,
absolute errors scale directly with sensor response time

and flight speed.

(a) Maximum Absolute Error

(c) z: 175 m; Maximum Absolute Error
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LES: Example Nebidska

Errors relative to a representative snapshot for the airmass
boundary simulation: If aircraft encounter the rapidly-
evolving wake, the accuracy in representing a snapshot state
of the atmosphere degrades with decreasing airspeed.
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ESA Nebiaska

Lincoln

Ensemble sensitivity analysis: Estimate the
sensitivity of a dynamical model to observations
by statistically relating perturbations to the
forecast response (Ancell and Hakim 2007)
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ESA Nebiaska

Lincoln

0 Atmospheric data come numerical simulations

3 No instruments are actually “operated”
O Pros

u Sensitivity can be evaluated over a large area and
numerous lead times

o Cons E(Righ’r time?

® Doesn’t actually use synthetic data E(Righ’r place?
so observations aren’t simulated H Right instrument?



ESA: Example Nebidska

“Ensemble Sensitivity Analysis for Targeted Observations of
Supercell Thunderstorms” (Limpert and Houston 2018, MWR)

c) Region-averaged Sensitivity
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ESA: Example Nebidska

Challenges of storm-scale ESA:
O Linearity is a poor assumption

O Auto-correlation mimics sensitivity

State State

Response Response



ESA: Example Nebidska

Challenges of storm-scale ESA:
O Linearity is a poor assumption

O Auto-correlation mimics sensitivity
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Lincoln

Atmospheric data come from LES (nature run)

Simulated instrument is “operated” within this idealized
environment

Synthetic data are assimilated into a NWP model to
quantify impact

O Pros E(Righ’r time?

= Can evaluate NWP skill E(Righ’r p|qce2

® Addresses all assessment components I(Righ’r instrumente
o Cons

® Parameter space is limited but can be narrowed with the
prior techniques

® Far more complicated than previous methods



OSSE: Example Nebiaska
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Summary Nebiaska

There isn’'t a single “golden” technique for determining the
configuration and CONOPS of an observing platform that
maximizes its value in the forecasting process

1. Analytic models
Large eddy simulations (LES)

Ensemble sensitivity analysis (ESA)

h 0N

Observing system simulations experiments (OSSE)

Adam Houston:
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